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Groundwave Height-Gain Functions
Near a Shoreline

R.M. Jones

ABSTRACT. A saddlepoint approximation to a Xirchhoff integration
over the surface of the Earth is used to derive formulas for the
groundwave field for an elevated observer near a shoreline. It is
shown that the transition from homogeneous groundwave propagation to
mixed~path groundwave propagation occurs not at a vertical plane
above the shoreline, but rather at an oblique surface tilted in the
direction of propagation. Thus, close enough to the shoreline and
high enough, the field over land (for sea—to-land propagation) will
not be affected by the land beneath the observer, so that the field
is represented in terms of sea-type groundwave modes (with the asso-
ciated height-galn functions) even though the observer is above the
land. This phenomenon is explained by interpreting groundwave modes
as ground-reflected waves. There is a transition region (of several
hundred kilometers horizontally for HF propagation) where diffrac-
tive corrections must be made because of the location of the shore-
line.

1. INTRODUCTION

When groundwaves propagate across a discontinuity in ground surface im-—
pedance (as at a shoreline), there is coupling among groundwave modes. The
formulas that give the coupling coefficients and the spatial variation of the
groundwave field are well known (e.g., Hill and Wait, 1981, and the references
they cite). Figure ! shows the geometry for such mixed-path groundwave propa-—
gation.

The method used by Hill and Wait to calculate the spatial variation of
the groundwave field is to calculate the groundwave signal strength for the
transmitter and receiver on the Earth's surface and then extend the calcula-
tion to larger heights with height—gain functions appropriate to the ground
directly below the transmitter or receiver. Although this method works well
when the transmitter and receiver are far from the shoreline, it leads to an
apparent discontinuity in the field above the shoreline (Jones, 1982).
Although the discontinuity might disappear if enough groundwave modes were
used, a comparison of calculations using 500 groundwave modes with calcula-
tions using 200 modes does not suggest that (Jones, 1982).

Possibly the problem is caused by use of approximations that are no longer
valid for the higher—order groundwave modes or at large heights. Possibly the
groundwave mode sum does not converge just beyond the shoreline for an ele-
vated observer. There may be other reasons to explain the difficulties, but
the result is that the usual methods do not seem to work well for an elevated
observer near the shoreline.
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Figure l.-~—Geometry for mixed-path groundwave propagatiom.

A physical explanation (Jones, 1982) may be that the transition from one
kind of groundwave mode representation to the next does not take place along a
vertical plane above the shoreline, but instead along an oblique surface
tilted toward the direction of propagation. Thus (for sea—to-land propaga-
tion}), for an obhserver high enough, it is more appropriate to represent the
field in terms of sea-type groundwave modes (with the associated height~-gain
functions) even if the obhserver is above the land. Section 3 explains the
physical basis for this result. Co

The usual representation, in which the transition takes place at a ver-—
tical plane above the shoreline, may not be wrong, but may simply not be as
useful -as the one presented here. ‘ ‘ ’

Jones (1982) estimated the location of the trausition surface on the

basis of an ad-hoc argument. Here, I give a more rigorous estimate using a -
Kirchhoff integral estimate of the field strength.

2. SUMMARY

For mixed-path groundwave propagation (as zecross a shoreline), the usual
height~gain functions (e.g., Hill and Wait, 1981) are appropriate for an ele-
vated observer when the observer is far from the shoreline. However, when the
observer is close enough to the shoreline or high enough, the appropriate
height-gain function is that for an observer above the sea for sea-to-land
propagation even though the observer is above land. This effect is explained
by realizing that a groundwave mode is a ground-reflected wave at nearly hori-
zontal incidence. For sea-to-land propagation, an elevated observer sees the
groundwave mode coming from the sea even though he may be above the land.
There is a large transition region of several hundred kilometers near the
shoreline where neither a simple land-type nor sea—type height-gain function
is useful. - ‘ ‘
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3. RAY REPRESENTATION OF GROUNDWAVE MODES

To understand why it may not always be appropriate to calculate height-—-
gain functions in the usual way near a shoreline, it is necessary to under-
stand the ray representation of groundwave modes.

A groundwave mode can be represented in terms of a complex angular propa-
gation constant v (Jones, 1968a,b, 1982). That is, the field changes by an
amount

E « exp(-iv8) (1)

in propagating a great—circle angle 8., The angular propagation constant v is
complex to give both amplitude and phase. The effective propagation constant
in terms of linear distance d along the Earth's surface would be v/a, where a
is the radius of the Earth. That groundwave modes propagate with nearly the
same phase velocity as waves in free space 1s expressed by the fact that v/a
is nearly the same as k, the free space wave number.

Mathematically, the representation of field strength in terms of ground-
wave modes comes from a residue expansion at the poles of the ground reflec—
tion coefficient (Wait, 1961; Berry, 1964; Jones, 1968a,b). Thus, groundwave
modes are ground-reflected waves that reflect at an angle where the ground
reflection coefficient is infinite. Physically, an infinite reflection coef-
ficient means that it is possible for a reflected wave to satisfy the boundary
conditions at the ground with no incident wave.

Thus, we can plicture a groundwave as shown in Fig. 2. The angle B of
the groundwave from the horizontal is characteristic of the groundwave mode,
and is given by

cosB, = v_/ka (2)

where v_ is the angular (complex) propagation constant of the groundwave mode,
k is the free—-space wavenumber, and a 1s the Earth radius. Appendix A defines
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these and other quantities more precisely. The parameter vy is complex, to
give both amplitude and phase variation of the groundwave mode with distance.
Thus, the angle Bs must also be complex because of (2). However, the angle

Bs is small, because v_ is wvery close to ka. Thus, when we picture a ground-
wave mode as in Fig. 2, we must keep in mind that the groundwave mode propaga-
tes nearly horizontally.

Appendix B gives an interpretation of groundwave height—-gain functions
using Fig. 3 that substantlates the ahove ray Interpretation of groundwave
modes.

Jones (1982) pointed out that this ray interpretation of groundwave

modes implies that the amplitude of a groundwave mode should depend not on the
properties of the ground below the receiver, but rather on the properties of
the ground at the point from which the ray that represents the groundwave mode
seems to be coming (that is, from the ground reflection point for the ground-
wave mode). If the effective ground reflection point ig on the sea, then a
height—gain function appropriate to the sea should be used to calculate the
signal strength even 1f the receiver 1s above the land.

To estimate where the transition occurs is difficult, however, because
the angle #_ is complex, and therefore the position of the reflection point on
the ground will also be complex. As an ad-hoc estimate, the transition was
taken to occur when the real part of the position on the ground crossed the
shoreline (Jones, 1982), The results seemed reasonable. However, here I use
a Kirchhoff integration representation to calculate more rigorously where the
transition occurs. As it turns out, the analysis is much more complicated
than the simple picture suggested {Jones, 1982) and the transltion regions are
much larger.



4. KIRCHHOFF INTEGRAL REPRESENTATION FOR
MIXED-PATH GROUNDWAVES

The arguments presented above suggest that the usual method for esti-
mating height-gain functions might be inaccurate close to the shoreline.
Those arguments, however, imply no inaccuracies for the field on the ground
for mixed-path propagation. Thus, if we assume that the fields on the ground
calculated by using the usual mixed-path groundwave propagation formulas (Hill
and Walt, 1981) are accurate, then we can calculate the field above the ground
using Kirchhoff integration in which we consider the integration to he carried
out over the surface of the Earth.

To be complete, the Kirchhoff integration must include an integration
over all surfaces that enclose the observer, Thus, we must also include an
integration over a sphere at infinity. However, for our problem, we have no
sources at infinity, so we can take that integral to be =zero.

In addition, we must include a volume integral over all sources above the
Earth, which includes the source dipole in our problem. However, we assume
that the source dipole is so far away (and beyond the horizon) that the direct
field from the 'source is negligible compared with the groundwave field. Thus,
we neglect the direct contribution from the source.

Further, Stratton (1941, p. 468) shows that at a discontinuity in ground
surface properties (as at a shoreline) there will be a line distribution of
sources that contribute to the total observed fleld in addition to the
Kirchhoff integral over the surface of the Earth. Tai (1972) shows that the
Franz formula for surface integration includes directly the contribution of
sources at the shoreline, whereas the Stratton-Chu formula (Stratton, 1941,
pPp. 464-468) does not.

For the present case of mixed-path propagation normal to the shoreline
for a vertical electric dipole source, there is no contribution of these
sources at the shoreline to the horizontal magnetic field at the observer. In
addition, the sources at the shoreline contribute an electric field at the
observer in a direction parallel to the straight line connecting the observer
with the shoreline. Thus, within the approximations normally used, the
contribution of these sources at the shoreline to the total vertical electric
field at the observer would be small except very near the shoreline, so we
neglect the line sources here.

Thus, the total significant field at the observer is given by Kirchhoff
integration over the surface of the Earth. Figures 4 and 5 define the
integration geometry. Figure 4 shows a spherical triangle on the Earth's sur-
face connecting the source, the integration point, and the point directly
below the observer. Figure 5 shows a vertical plane through the observer and
integration point. Appendix C shows that such an integration can give the
horizontal magnetic field at the observer as

H=7J f f“ f(\’t,V,a)exp[-iP(vt,v,a)]dadv (3)
Vv

tC -7
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where C 1s a contour from the origin around the branch point v=ka of P and
back to the origin,

P(vt,v,a) = -y 0 + vtcosnl(cose cosy + sin® siny cosal+
22 2.1/2 22 2.1/2
(KT = v T=(kTa -V . (4)
-1 -1 '
Y = cos (v/kr) - cos (v/ka), (5)

Vi Vg when the integration point is in the source region (on the sea),

v = v when the integration point is in the observer region (on the land), ©
is the great-circle angle between the source and the observer, a is the radius
of the Earth, (r—a) is the height of the observer, and f is a function (de-—
fined in Appendix C) that is slowly varying except at the shoreline, where it
is discontinuous because the boundary condition (and therefore, the field) is
discontinuous there.

Equation (4) neglects azimuthal refraction that occurs when the ground—
wave mode is incident obliquely on the shoreline. However, when the great
circle between the source and the observer is normal to the shoreline (the
case considered here), the greatest contribution to the integral in (3) occurs
for o=zero, where there is no azimuthal refraction at the shoreline. 1In
general, however, azimuthal refraction can be taken into account in a



straightforward manner. It is neglected here to simplify the equations, so
that the main point of this report (finding the appropriate height-gain func-
tion near a shoreline) is not masked.

The parameters v and a speclfy the position of the integration point on
the surface of the Earth. a is the azimuthal angle of the point relative to
the observer. v is proportional to the cosine of the elevation angle of the
integration point at the observer.

The physical interpretation of P (apart from a comnstant term) 1s that it
is the (complex) phase of the signal that propagates as a groundwave mode to
the integration point and then as a straight-line ray to the observer. Thus,
the integral in (3) could be interpreted as a path integral (e.g., Feynman and
Hibbs, 1965). ‘ :

If the field were specified exactly on the integration surface, then the
integral (3) would give the field at an elevated observer exactly. Because
the field specified on the ground is only approximate, the solution in (3)
will also be only approximate. We consider here.only the case in which
distance from the source to the observer is much smaller than the size of the
Earth. In that case, the actual limits used for the integrations in (3) are
not important as long as they are large. )

It will be noticed that the integration in {3) includes the part of the
Earth's surface that is not in the line of sight of the observer. The
straight-line part of the path passes through the Earth for those integration
points. Of course such paths have no physical significance. The conductivity
of the Earth is large enough that such paths would not contribute signifi-
cantly to the field because of the great attenuation in passing through the
Earth. However, such paths are treated in the integral in (3) as though the
straight-line segment were in free space. Thus, no such attenuation would
appear for those paths in (3). The justification for including such paths
(and including them in that way) is given by Stratton (1941, p. 467).

Stratton points out that the surface fields in the Kirchhoff Integration are
equivalent to a distribution of electric and magnetic sources on the surface.
For the purpose of obtaining the fields outside the Earth, the original
problem can be replaced by one in which we have these equivalent sources
distributed over the surface of a sphere that represents the Earth. The
inside of the Earth is replaced by free space, so that the total effect of the
Earth on the propagation is then taken into account by the equivalent sources.
Thus, the integration in (3) is justified, including those paths that appear
to pass through the Earth.

If the exact field on the surface of the Earth were used in the Kirchhoff
integration, then the integration would yield the correct field for an ele-
vated observer. The actual field used in the integration here is a high-
frequency approximation to the correct field (that is, the field for large
ka), If correction terms were included in the surface field, these would con—
tain higher powers of (ka) ~. These woulf in turn contribute terms-to the
integral that have higher powers of (ka) ~. We could neglect these terms to
get the field for large ka. .Thus, it is justified to neglect these higher
order terms at the outset, and use only the high-frequency approximation for
the field on the surface for the Kirchhoff integration. L



The second term in (4) is the contribution to the phase of the groundwave
mode as it propagates to the integration point. The final two terms in (4)
give the contribution to the phase of the stralght-line ray from the integra-
tion point to the observer.

5. SADDLEPOINT EVALUATION OF THE INTEGRALS

For the purposes of the present work, the main results come from the
insight gained in looking at the saddlepoint evaluation of the integrals in
(3) rather than from a more rigorous evaluation.

Mathematically, the saddlepoint occurs where P is an extremum for
variations of o and v. Thus, the integration point where P is an extremum
determines a path that satisfies a complex form of Fermat's principle.

Let us consider what path satisfies Fermat's principle. As we might
expect from symmetry, for the azimuth integration, Fermat's principle deter—
mines that o Is zero at the saddlepoint. This is a path that is in the ver-
tical plane through the source and observer. As expected, this is the path

that is the shortest as a function of a. Appendix D shows this in more
detail.

Once the ¢ integration has been done, we can represent the v integration
more explicitly as an integral in two parts as

Wl 0
H=7) £3(V)exp[-1P( v ,v) 1dv+ ¥ £,(v)exp[-1P(v_,v)1dv, (6)
s 0 r v

where f3 and f4 are slowly varying functions defined in Appendix E, and

2.1/2 2.2 2.1/2
P(v,,V) = —v Y+ (kzrz-v ) /2 _ (k“a“-v") / . (7)
Appendix D shows that the saddlepoint condition leads to
Vo=V, ' (8)

in which there are three possibilities:
(1) The saddlepoint occurs in the source region far from the shoreline.
(2) The saddlepoint occurs in the observer region far from the shoreline.

(3) The saddlepoint occurs near the shoreline.

In the first case, we make a saddlepoint evaluation of the first integral
in (6), neglect the effect of the upper limit, and neglect the second inte-
gral. Appendix E makes a saddlepoint evaluation for that case, and shows that
it leads to the same result as for homogeneous groundwave propagation, at
least in the asymptotie limit, even when the observer is above the land. Thus
this substantiates the physical picture proposed in Secs. 1 and 3.



In the second case, we make a saddlepoint evaluation of the second
integral in (6), neglect the effect of the lower limit, and neglect the first
integral. The same saddlepoint evaluatlon in Appendix E applies to this case
also, and leads to the usual result for mixed-path groundwave propagation.

In the third case, neither integral in (6) can be neglected. The asymp-
totic evaluation of the integral is difficult in that case because it involves
a saddlepoint near an endpoint and branch points near a saddlepoint. For the
present purposes, it is not necessary to evaluate the integrals, but merely to
point out that this third case 1s a transition case In which the evaluation of
the field is more complicated.

For the present purposes, it is sufficient to indicate where the tran-—
sition region occurs, and that is taken up in the next section.

6. TRANSITION REGIONS

We want to find out where the boundaries are that separate the three
regions for the cases mentioned in Sec. 5. For the first and second case, we
want the shoreline (which is one of the endpoints for each of the integrals in
(6)) to be far from the saddlepoint. When that does not occur, we have the
third case. '

Figures 6—-8 show these transition regions for a representative case. {The
calculations are given in Appendix F.)

Figure & shows the transition regions for the first groundwave mode. The
graph shows four regions. In the upper left corner, we have the region where,
although the observer is above land, the correct height—gain function is for
an observer above the sea.

If the observer is too low or too far from the shoreline, he will be in
the next region, which i1s a transition region for sea-type groundwave modes.
In this second region (which includes the horizon)}, sea—-type groundwave modes
rather than land-type groundwave modes still apply, but a diffractive correc-
tion must be added. 1In this case, the diffractive correction is needed not
because the endpoint is too close to the saddiepoint, but because the endpoint
is on the steepest ascent slde of the stationary phase path through the
saddlepoint rather than on the steepest descent side. Under other circumstan-—
ces, the diffractive correction might be caused by the endpoint's being too
close to the saddlepoint (in which we would say that the endpoint is within
the first Fresnel zone of the saddlepoint). The correction increases as the
observer moves farther from the shoreline or closer to the ground. If the
observer is too far from the shoreline or too close to the ground, it is no
longer useful to represent the field in terms of sea-type groundwave modes.
Figure 6 shows the limit.

Beyond that limit, Fig. 6 shows g small region where neither land- nor
sea-type groundwave modes give a good representation of the field. Such a gap
does not always occur. For land-to-sea propagation, for example, in this same
small region one could represent the fleld at the observer inm terms of either
land- or sea—type groundwave modes, although the diffraction correction in
either case would be large.



Finally, as the observer moves even farther away from the shoreline or
closer to the ground, he encounters the region where it is more appropriate to
represent the field by land-type groundwave modes. This region is a tran-
sition region, however, because a diffractive correction is needed. The
farther away the observer is from the shoreline, the smaller this correction
becomes, and it approaches zero for very large distances. All of the cases T
examined would require a diffractive correction to the land-type groundwave
modes at all distances from the shoreline, although the correction is probably
negligible for reasonably large distances.

Figure 6 seems to imply that even on the ground diffractive corrections
are needed close to the shoreline. That contradicts a basic assumption here
that the usual representation of the groundwave field is correct on the
ground. This apparent contradiction needs to be investigated further.

Figure 7 shows the transition regions for several groundwave modes from 1
to 10. The higher order sea~type groundwave modes need a diffractive corree—
tion closer to the shoreline than do the lower order modes {at least for
larger observer heights). The transition from sea-type to land-type ground-
wave modes occurs farther from the shoreline for higher order modes.

Close to the ground (less than a dimensionless distance y of about 1, or
200 m for the case in Figs. 6 and 7), it seems that a groundwave mode repre-—
sentation always needs a diffractive correction for mixed-path propagation.
For the case in Fig. 7, a diffractive correction is not needed for sea-type
groundwave modes when the distance from the shoreline to the horizon is
greater than about 1 in dimensionless units (x), or about 50 km.

Figure 8 shows an expansion of the lower left corner of Fig. 7. Only in

the upper left corner of Fig. 8 is a sea-type groundwave mode representation
valid without diffractive corrections.

10
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Figure 6.--Transition regions for groundwave mode 1. The source is on
the sea (to the left of the plot) very far away. For an observer in the
upper left corner of the plot, the correct height-gain function is that
of a groundwave mode over the sea, even though the observer is above
land. 1In the center region (which includes the horizon), sea-type
height—-gain functions are still appropriate, but it is necessary to make
diffractive corrections to the field. In the region to the right, land-
type height—-gain functions are appropriate, but diffractive corrections
are necessary. In terms of the physical units (km and m}, the vertical
scale is expanded by a factor of about 250. Thus, the boundary lines
that appear nearly vertical are really nearly horizontal. The calcula—
tions here correspond to a radio frequency of 30 MHz, ground conduc-
tivity of the sea of 4 mho/m, a dielectric constant for the sea of 80,
ground conductivity for the land of 0.01 mho/m, and a dielectric
constant for the land of 15. Changing the wave frequency changes the
scaling between physical units and nondimensional units on the coor-
dinates [through equations (Al) and (A5)].
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X, Dimensionless Distance of Observer from Shoreline
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Figure 7.--Transition regions for several groundwave modes (see Fig. 6).
The groundwave mode number makes a negligible difference in determining
the bhoundary between the pure sea-type groundwaves in the upper left
corner and the transition region (where diffractive corrections must be
applied). The boundary between sea-type groundwaves and land-type
groundwaves is farther from the shoreline for the higher order modes,
although the diffractive corrections for either type of groundwave are
probably large near the boundary.
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longer negligible.
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Appendix A. Notation and Auxiliary Equations

/3 d

x = (ka/2)'> a/a (AD)
x, = (ka/2)' a)/a (A2)
x, = (ka/2)'/? 4, /a (A3)
< = Ga/2)'? ar/a (a%)
y = @/ka)t’? wn (A5)
q=-1 (ka/Z)”3 A (A6)

A =212, (A7)

q = - (kas2)1/3 A, (A8)
q, = =i (ka/2)*/3 A, (A9)
w '(t) =4 wy (£ ) (A10)
w (6) = /2 [B1(e)-1a1 (1)) (A11)
w (e = qp w () | (412)
(e = gy w(e) (A13)
v, = ka + (ka/2)t3 ¢ (A14)
v, = ka + (a/2)'/? ¢ (A15)
v = ka + (/)3 ¢ (A16)
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W(x,q) = ] W(x,q,t)
s=1

W(x,q,t ) = (mc/i)l/2

(<] -]

W'(x,q;,9,) = D) W'(x,97,4,,t

s=1 r=1

exp(—ixts)/(ts_qz)

s’tr)

qy = 94 exp(ﬂixlts) exp(—ixztr)

W‘(x,ql,qz,ts,tr) = (Trx/i)ll2

Ho(d) = %9 Ids exp(=iKd)/(2wd) .
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Appendix B. Geometrical Interpretation of
Height-Gain Functions

The spatial variation of the field strength of a groundwave mode is given
by Jones (1982) as

E(6,h) « exp(-1v8) wl(ts—y)/wl(ts), (B1)

where 0 is the central-Earth angle between the source and the observer, and h
is the height of the observer above the ground. The normalized height param-
eter y is defined approximately by

2/3 (y—éé)3/2 = (k2r2~v2);/2 - v cos'l(v/kr) (Bé)
and
2/3 (¢ Y% = @222y cosT (vika), (B3)
where
r=a+h, (B4)

a is the radius of the Earth, k is the free-space wave number, w, is the Airy
function defined in Appendix A, and v is the (complex) angular propagation
constant of the ground wave mode (Jones, 1968b; 1982), which is determined
from tg by (Al4d).

The first factor in (Bl) gives the horizontal variation of the groundwave
mede. The second factor is called the height-gain function, and gives the
variation of the signal strength as a function of height.

It is easiest to see a geometrical interpretation for the height-gain
function for large heights. For large heights, y as determined by (B2) is
large and nearly real positive. Under those conditions, an asymptotic
approximation for the Airy function

3/2 /4

wy (e my) = expl-in/4-12/3 (y-t )>21/(y-t )’ (85)

is valid (Wait, 1961; Abramowitz and Stegun, 1964, p. 488; Jones, 1968a,
Appendix D). Using the parameters defined in Fig. 3, we can rewrite (B2) to
give

/2

2/3 (3t )% = k(are,) - v(o-0'+e) (86)
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and (B3) to give

2/3 (—ts)3/2 = ke, - ve_ . (B7)

Substituting (B5), (B6), and (B7) into (B1) gives

exp(-ive'~ike) expl-in/4-i2/3 (—ts)3/2]
E(8,h) « . (B8)

(y-ts)1/4 w (€ )

The second factor on the right of (B8) is a constant for a given groundwave
mode. We can interpret the first factor in (B8) using Fig. 3. The phase
corresponds to a wave that propagates as a groundwave for a central-Earth
angle 9' (from the source to the integration point), then as a free—space wave
for a straight-line distance £ (from the integration point to the observer).
From the point of view of the observer, the groundwave mode appears as a wave - -
that comes from the ground such that the wave normal direction of the wave
makes an angle 6_ with the horizontal when the wave leaves the ground. The
angle 8, is (of course) complex, and is given (from Fig. 3) by (Gl). When h
is smali enough, (B2) can be further approximated, as can (B3) (e.g., Wait,

1961; Hill and Wait, 1981), but then the above geometrical interpretation is
hidden.
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Appendix C. Kirchhoff Integral for
Mixed-Path Propagation

If the solution for the electric and magnetic field is known over a
closed surface, then the field at any point within the volume bounded by that
surface can be found by a Kirchhoff integration over that surface. Such a
solution is exact if the field specified on the surface is correct. If there
are sources within the volume, their contribution must be included. )

In the present case, it is appropriate to perform the Kirchhoff integra-
tion over the surface of the Earth, because we assume that the standard for-
mulas for mixed-path propagation are accurate for an observer who is not
elevated. To isolate the effect of an elevated observer from other effects,
we assume that the source is on the ground and far enough away from the shore-
line that we can represent the source entirely by the groundwave modes it
excltes. The surface of integration for the Kirchhoff integration will be the
surface of the Earth plus a surface at infinity. We assume that the latter
surface makes no contribution, sc we consider only the contribution from the
integration over the surface of the Farth., The field at the surface of the
Earth is represented by groundwave modes excited by the source. We use the
vsual mixed-path groundwave propagation formulas to represent these.

The source is a vertical dipole, so the groundwave field will consist of
a horizontal magnetic field (normal to the path of propagation) and an
electric field in the vertical plane of propagation and nearly vertical. It
is usual to calculate the vertical electric fields in groundwave propagation,
partly to give the signal observed by a vertical electric dipole. Here, T
shall consider the horizontal magnetic field because the formulas are slightly
simpler. Apart from a constant factor (the impedance of free space), the
horizontal magnetic field is nearly the same as the vertical electric field.
They differ only because of the slight tilt of the electric field, and this
results in the vertical electric field's having an additional factor of about
v/ka. It should be noted that in the usual approximate formulas for ground-
wave propagation, factors of v/ka are usually ignored in the solution. Thus,
within the usual approximations, there is no difference between the vertical
electric field and the horizontal magnetic field (apart from a constant
factor). : -

The Stratton-Chu formula (Stratton, 1941, b. 467; Jackson, 1962, pp. 283-

285; Jackson, 1975, p. 433) gives the magnetic field at the observer {(position
z) as .

#(z) = 1/47 | {ik/z, (At =B (21 16+{R =H(Z") IxTre-[a" «H(Z* )]V e)dsT, (C1)
s! |

e .
where ZO is the impedance of free space, n' is a unit vector normal to the sur—

>
face of integration pointing into the volume containing the observer, z' is
the integration point of the surface, and

G = éxp(—.ik,%)/'l ' (€2)

is the free—space Green's function, where
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+ >

L= |z-z"| (€3)
and
W16 = (ik + 1/0)6% , ' (c4)
where
2= (3-27)/18 (cs)

is a unit vector pointing from the integration point to the observer.

The general formula in (Cl) can be simplified for the present case, in
which the surface of integration is the Farth's surface and the magnetic field
on the ground is horizontal and normal to the vertical plane through the
integration point and the source. First, (Cl) can be written entirely in

terms of the magnetic field by using the surface impedance (e.g., Jackson,
1975, p. 772)

ATXE = ZS At x(n' =) (cs)

where ZS is the surface impedance of the Earth. We also have

' x(a' <) = ~H, (c7)
il =0, (c8)

and
Brxf) x ¥'6 = (ik + 1/)6R" «d) x 2 . (c9)

Figure 4 shows the integration geometry. The source, integration point,
and vertical projection of the observer on the Earth's surface are shown. The
triangle shown is a spherical triangle on the Earth's surface, and the sides
of the triangle are great circles. Remembering that the observer is elevated,
we can use {C5) and Fig. &4 to give

Gosil) x 2= (A'eDT - Hoetn e a' {2 -2a'-2) . (C10)
Substituting (C2) through (C10) in (Cl) gives

f(z) = 11—17.( [-ika + (ik + 1/2)3" +2]GH(Z" )ds"
S

1 -~ -~ :
- 7= | (ik+1/sine|tn’ «2|n'Gu(z")as’ (c11)
5
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where

A= ZS/z0 . (Cl12)

We see that we have broken the total magnetic field into two components. The
first integral in (Cll) gives a component normal to the vertical plane through
the source and the integration point. The second integral in (Cll) gives a
vertical component. The second term would be zero if the angle o in Fig. 4
were zero because then the angle e would be 180°. When we make a saddlepoint
approximation later to the iIntegrals in (Cll), we shall get ¢ equal to zero at
the saddlepoint, but for now we keep both terms.

We need to factor the integrands in (Cll) inte a slowly varying part
times a quickly varying exponential part. The exponential part of (Cll) comes
=S +

from the exponential parts of G and H(z'). The exponential part of H(z') is
different for each groundwave mode. Thus, to proceed further, it is necessary
to separate (Cl1l) into a sum of groundwave modes of the field at the integra-—
tion point z'. To do that, we define

) ﬁs(g') when z' is on the sea
s

g (2") = (c13)

) ﬁr(g') when z' is on the land .
T .

Thus, when the integration point z' is on the sea, we express the field at the
observer as a sum of sea—type groundwave modes. When the integration point z’
is on the land, we express the field as a sum of land—~type groundwave modes.
To treat both cases in a uniform way, we express either type of groundwave

modes as a sum over t, where t 1s simply a generic groundwave mode subseript.
Thus we also define

ts for z' on the sea
t = (C14)

tr for z' on the land
and

vs for z' on the sea
v o= (CIS)

Ur for z' on the land.
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We next factor the field at the integration point into a unit vector

A

E.

H(z') (which is slowly varying) times a magnitude H(g').

A2y = 1ty w2y . | (C16)

We now factor the magnitude in a standard way

H(z') HO(d‘)W(x',ql) if z' is on the sea : (Cci17a)

H(z')

Ho(d')W'(x',ql,qz) if z' is on the land, {C17b)

where H,(d') is the field that would be observed a distance d' away from the
source 1f both the source and observer were above a flat perfect conductor,
and is defined in Appendix A. The factors W and W' are correctlon factors
defined below in terms of a sum of groundwave modes.

Wx,ap) = L W(x,qp,ty) | (c18)
s=]
W'(x’ql;qZ) = 2 z W'(X:qlqu:tsatr) . (C19)

- s=]1 r=1

The functions W with three arguments and W' with five arguments are defined in
Appendix A. The mixed-path propagation formula (Cl7b) is valid only if the
groundwave propagation is normal to the shoreline. Thus, formulas in (C18)
and (Cl9) are valid only when the shoreline is a circle concentric with the
source. To simplify the calculations here, T assume that to be the case.
These calculations could be extended to the more arbitrary situation using the
formulas of Wait (1963a,b, 1964), but the additional complexity would detract
from the maln point of the present development.

To explicitly reveal the exponential dependence of Ho(d'), W(x,ql,ts),
and W'(x,ql,qz,ts,tr), we use the definitions to write

Ho(d') = Ho(d)(d/d') exp(=ikd' + ikd) (Cc20)
Wix! _ v 172 .
(x ,ql,ts) = W(x,ql,ts)(x x) exp(=ix ts+ixts) {c21)

1/2

W'(x',ql,qz,ts,tr) = W'(x,ql,qz,td,tr)(x'/s) exp(—ix'tr+ixtr). (C22)
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We can express the above relations in a more uniform way if we define

W(x,ql,ts) for z' on the sea
U = (c23)
E W'(x,ql,qz,ts,tr) for z' on the land.

s

If we now make all the appropriate substitutions into (Cll), we get

iz

m
L@ = [ [ v ,v,0) expl-1P(v ,v,a)]dadv (c24)

C -m

where C is a contour from zero that goes around the branch point at v=ka and
back to zero,

P(v,_,v,a) = k& + vte' - vte s (c25)

t’
kf is given by (HI),

' = cos_l(cose cosy + sin® siny cosa) , (C26)

v is given by (H2),

H () /2 o
f(vt,v,a) - U{[-ika = (ik + 1/g)n*«2]H(z")
~(ik + 1/8)sine|2-n" Zin }z 22 siny[(k2a’—v2)~ 1/2 (kzrz-vz)"l/zl,(cz7)
and
ds' = a’ siny dody
= a? sinY[(kzaz vyt 1/2 (kzrz- vz)'lledadv . (c28)

Equations (H1) and (H2) (see Appendix H) come from the geometry of a ver-
tical plane through the observer and integration point in Fig. 5. Equation
(C26) comes. from the spherical triangle geometry in Fig. 4. Also, from Fig. 5
we have

-1 - (i, (c29)

2>

n'e-
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Appendix D. Fermat’s Principle
The complex phase in the integral in (C24) is [from (C25)]
P(vt,v,a) = k& + v 6" - v, (nl)

t

where from (H1),

kg = (k2r2 _ vz)l/z _ (kzaz _ v2)1/2 , (02)

o' = CQS_I(cose cosy + sin® siny cosa) , (D3)
and from (H2),

Y = cos %%—— ::os_1 Ea . (n4)

We want to find the values of v and o for which P 1s stationary. First,
we consider varlations in the azimuth angle a. We have

o _ :
50 = Vy sin® siny sina/sing' . (D5)

Setting (D3) equal to zero gives the sfationary point as
a=0, (D6)

which is clear from the azimuthal symmetry of the geometry. To make a saddle-
point approximation to the integral in (C24), it is necessary to find the
second derivative of P, and evaluate it at the saddlepoint specified in (D6).
This gives

BZP

2

= v, sind siny/sind’ . (D7)
oot

o=0

Substituting (D6) into (D3) gives

e' = e"Y - (DS)

Substituting (D4) and (D8) into (D1) gives
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P{v_,Vv) P(vt,v,O) = k¢ = VY

tJ

2.2 21/2 _

- (2r 2.2 2y1/2

-1 v -1 v
-v —_vt(cos 5 ~ cos Eg) . (D9)

k

Next, it is necessary to find the value of v where P is stationary with
respect to variations of v. We have

_%% - (a2 12 (kzrz_vz)—IIZ](v_vt) ] (D10)

Setting (D10) to zero gives

vy (Dl11)

for the saddlepoint. Thus, at the saddlepoint, the ray from the integration
point to the observer is at the same angle as the ray used to give the
geometrical interpretation of the groundwave mode. To make the saddlepoint
approximation for the v integration in {(C24), it is necessary to find the
second derivative of P with respect to v, and evaluate it at the saddlepoint
(Dl1). This gives

2
? g 2az_v 2) 1/2 _ (kzrz_v 2) 1/2 . (D12)
v t t

v=v,

Substituting (D11) into (D9) gives

2.2 2.1/2 22 2.1/2 -1 Yt -1 Yt
P(vt,vt) = (k°r v, ) - (k"a Ve ) vt(cos Ty ~ cos EED . (D13)
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Appendix E. Saddlepoint Approximations

Appendix D shows that the saddlepoint for the o integration in (C24) is
at o equal to zero. The saddlepoint approximation for the ¢ integration in
(C24) is

> L+ 2 1/2
A (z) = [ f(v_,v,0) L exp[-iP(v,_,v,0)]dv . (E1)
t ¢c ¢ 2,2 t
i 37P/ b«

o=0

When o 1s zero, (C27) simplifies because then £ is 180° (see Fig. 4). Thus,

3 Ho(d)d”z v 2.1/2% &
E(v,,,0) = —————U{-ika + (ik + /(1 ~ G717/ 7Jaz")
R‘—ld‘—1/2a2 SinY[(kzaz_vz)-l/z _ (kzrz_vz)—llz] . (E2)

We see now that the vector £ (which is proportional to the magnetic field at
the ohserver) is horizontal and perpendicular to the vertical plane through
the source and observer (and thus has constant direction}. Thus, we can
gimplify things from here on by writing only the magnitude of f.

The integrand in (El) changes discontinuously when the integration point

moves from the sea to the land. Now that the ¢ integration is finished, it is
easy to express that change more explieitly.

v! o

Ht<;> = i £,(v) exp[-1P(v_,v)]dv + £' £,(v) exp[-1P(v_,v)]1dv , (E3)

where P(vt,v) is given in (D9), v' is determined from

-1 v -1 v' _ _
CoS ~ 3= = €08 == 8, = dy/a , (E4)

d2 is the distance of the observer from the shoreline, and from (D7) and (E2),
_ v 201720
£4(0) = By(W(x,q,,t ) {-1ka; + (ik + /[ ~ 717

ka 6 af sin(8-vy) 1/2

— %r } ,
2 6=y kr Zwi sine(kzrz—vz)(kzaz-vz)

(E5)

and
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f4(v) - Ho(d) Z Wl(x,ql,qz,ts,tr){—ikAz + (ik + 1/¢)[1 -~ CEE)Z}I/Z}

s
Eg_{ 6 af sin(8-v) ]1/2 (E6)
2 0~y kr 27i sine(kzrz—uz)(kzaz—uz)
where, from (H2),
_ -1 v _ -1 v
Y =cos = -cos g, (E7)
and, from (H3),
a siny = 4§ Y_ (E8)
kr

Appendix D shows that the saddlepoint for the first integral in (E3) is
at '

V= . (E9)

The saddlepoint integration of the first integral in (E3) gives

> 27 1/2
H(z) = f (v) ) exp[-iP(v_,v )] . (E10)
5 s''S 5 9 s%’s

i 3°P/ov

=y
]

Substituting (E5), (D12), and (D13) into (E10) gives

‘ v
o i . _ _s\1/2, ka
Hs(z) = Ho(d)W(x,qltS)[ 1kAI + (ik + 1/9)(1 ka) ] >
[ 8 al sin{(8~-v) ]1/2 1 ' }1/2
B~y kr | Sine(kzrz_vsz)(kzaz_vsz) | i[(kzaz_vsz)-lfz A (kzrz_usz)-llz]
exp[-i(k2r2—v 2)1/2 + i(kzaz-v '2)1/2 + iv c:os“1 fg—— iv cos_l-zi] (Eil)
s s s kr 5 ka” ° :

The formulas (C21) and (C22) assume that the distance from the source to
the integration peint is small enough that

sin(6-y) = -y . (E12)
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Thus, we would expect that (Ell) would approximate the correct solution only
within the validity of (E12). Similarly to (E12), we also have the approxima-
tion

sin 6 = 0§ . (E13)

It is thus valid to use (E12) and (E13) in (E11) because (E1ll)} already implic-
itly assumes those approximations. Using (E12), (E13), (H4), (H5), (Gl), and
(G2) in (E11) gives

- _ 1 . a 1 1/2
Hs(z) - HO(d)W(X’ql’ts)[ A+ 1+ 1k£) Slnet] 2r [sin(Y+Bt)sinBt}

2.2 20i/2 .22 2.1/2 -1 % -1 Vs
expf (-ik"r Vg )] + i(k"a Vg ) + ivs cos = - ivs cos E;]' (E1l4)

The first two factors in (E14) give the field on the ground directly
below the observer. Thus, the rest of (El4) should give the height-gain func-
tion

Wl(ts—y)/wl(ts) : (E15)

from (Bl). To see the extent to which it does, we use (AB) and (Al2) to give

8, = i@ 3, = 1Y wre ym(e) (E16)

We also use (B2) and (83) (substituting v_ for v). In addition, when Bt and
Y+6, are small, we can approximate (B2) and (B3) by

1/2( 1/2

sin(y+8) = (E) ' oyt ) (E17)
and

siné, (§;)1/3<—ts)1/2 i (E18)

Substituting (El6), (B2), (B3), (E17) and (E19) in (Rl4) gives
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wi(t )

s 1 1/2. a
Hs(z) = Ho(d)W(x,ql,ts)[-i E;ngy + (1 + IEE)(—cS) ] o
(- )Vt )M expl-t Ziy-e )¥2) emplt (- )Y (E19)

In the present comparison, we are considering a high-frequency (short
wavelength) limit., Thus, we assume

kg >> 1 . (E20)
In addition, we assume that the observer is close enough to the ground that
afr = 1. (E21)

In fact, the approximation (E21) is already implicitly in (C21) (and therefore
also in (E19)). .

If the observer is high enough, then the asymptotic approximation (B5) is
valid. When t_ is negative and large enough, the same asymptotic approxima-
tion is valid also for

w(t) = expl-in/b - 1 5=¢ ) 21/(e !4 . (E22)
When (E22) is valid, then we also have

wiCe (e ) = 1=t )2, (£23)
Substituting (Ezoﬁ th}ngh (E23) and (B5) in (E19) gives

H (z) = By(dIW(x,q;,t )w (t=y)/w,(t.) , : (E24)

the known correct formula for homogeneous groundwave propagation.

In fact, the asymptotic forms (E22) and (E23) are not valid when t_ is
too small. In addition, (B5) is not always valid. However, as far as we
know, (E24) is generally valid. Why does it appear to be valid only under the
condition of certain asymptotic assumptions? The answer is that the integrals
in (E3) contain branch points. The condition that one of the branch points is
far enough from the saddlepoint that we may consider the saddlepoint isolated
from it is exactly the condition for the asymptotic form (B5) to be valid.

The condition that the other branch point is isclated from the saddlepoint is
the same as the condition that the asymptotic form (E23) be valid. When the
saddlepoint is isolated from these two branch points, the saddlepoint eval-
uvation (Ei0) that led to (E19) is valid. Thus, (E19) agrees with (E24) under
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the conditions that (E19) is valid, but does not agree with (E24) when the
derivation leading to (E19) is not valid,

When the upper limit of the first integral in (E3) is zero (closed
contour), we have the situation of homogeneous groundwave propagation. For
that case, the first integral in (E3) must give (E24). We also know that the
saddlepoint should give the dominant contribution to the integral. Therefore,
it is reasonable to assume that the first integral in (E3) is approximately
equal to (E24) whenever the saddlepoint is 1solated from the endpoint and the
path of integration can be easlly deformed to go through the saddlepoint.

On the other hand, when the lower limit of the second integral in (E3) is
small enough, the saddlepoint falls in the iInterval of the second integral
rather than the first. 1In that case, we neglect the first integral in (E3)
and evaluate the second integral by the saddlepoint approximation. In the
same way that we derived (E19), this leads to

H (z) = H () § W (x £t Y[ —Fo i) (1 + (-t )”2] a_
r 0 S S ERVELPE Lo wl(tr) ike 2r
(-tr)-lm(y-tr)_lm expl-1 %—(y-tr)?’/z] expli %(—tr)3/2} . (E25)

Similarly, using the asymptotic. forms (BS3), (E22), and (E23) and the approxi-
mations (E20) and (E21) in (E25) gives

Hr(z) = Ho(d) g W'(x,ql,q2,ts,tr)wt(tr-y)/wl(tr) s {E26)

the known correct formula for mixed—-path groundwave propagation. The same
discussion of (E19) and (E24) applies to (E25) and (E26). Therefore, it is
reagsonable to assume that the second integral in (E3) is approximately equal
to (E26) whenever the saddlepoint is isolated from the endpoint and the path
of integration can be easily deformed to go through the saddlepoint.
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Appendix F. Paths of Integration in the Complex Plane

To obtain the regions shown in Figs. 6-8, we need to find out when the
saddlepoints of the integrals in (E3) are isolated from the end points and
branch points. It is inconvenient to investigate the paths of integration in
the complex v plane because the formula for the complex phase (D9) is too
complicated. We start out by writing (D9) in the following form:

2.2 21/2 .22 2.1/2 -1y _ -l
P(vt,v) = (kK =v°) - (k"a"=v") v(cos T~ cos ka)
- (v —\J)(cos_1 >~ cost =) . (F1)
t kr ka

To find out when the saddlepoints of the integrals in (E3) are isolated

from the endpoints, it is useful to change the variable of integration from v
to t defined by

%_ (_t)3/2 - (kzaz_vz)llz _ -1

Vv cos (F2)

>y
ka °*

We know that the saddlepoints of the integrals in (E3) are located at v =
Vi Also, we are Iinterested in determining when the endpoints of the
integrals are near the saddlepoints and when the branch points are near the
saddlepoints, Thus, it is allowable to make some approximations that are
valid near the saddlepoint. The following approximate relations follow from
(F2) for

v = ka = kr . (¥3)
%-(y-t)3/2 ~ (kzrz—vz)l/2 - v cos™! %; (F4)
cos” ] T\:Z . (%5)1/3 (_t)llz (F5)
cos_1 %;'= (%E 1/3 (y—t)ll2 (F6)
vska+ GH3 e, (*7)

In addition, we have, from (Al6)

v = ka + (1%-?-)1/3 t

. . (F8)

t

Substituting (F2) through (F8) in (Fl) gives
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P(t) = (v, = 2 (0% - L (-6)*? - (e 000 - oD (o)

To finish changing integration variables in (E3) we use the additional
approximate relations

ka

[l - CEE)Z]I/Z N (%5)1/3 (_t)I/Z (F10)

(- (f; SR (%;)1/3 -0)t/? (F11)
and take the derivative of (F2) to give

-0)12 g = cos™! 2 v . (F12)

Finally, substituting (E12), (E13), (E20), (A8), (A9), (F5), (F6), and (F9)
through (F12) into (E3) through (E6) gives

t! -
Ht(é) = f f5(t)exp[-iP(t)]dt + fs(t)exp[—iP(t)]dt , (F13)

-0 . t!

where P(t) is given by (F9), t' is determined from

(-t - ent2 o 18, (F14)
oy o @ty (o 1) 2)1(g0) % - ey /2y s
£.(t) = . (F15
> 4(aiy 1/ (-t)1/% (ey!/?
and
_Eo(d)gwl(x,ql,qz,ts,tr) {qz + i(_t)l/Z]{(y_t)I/Z _ (_t)1/2]1/2
fo(t) = 73 73 . (F16)

4(ni) (y-t) 2 (-t)

Both integrals in (F13) have the same form. There are branch points at
t=0 and t=y, and the saddlepoint is at t=t_. The location of the saddlepoint
can be seen by taking the derivative of (FE):

dp _

L =2 (e, -y ~1/2

/2

(-t) ] . ’ (F17)

t

Taking the derivative of (F17) and evaluating it at the saddlepoint gives
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Figure F-l.--Complex t plane for integration for the sea-type groundwave mode
1. For homogeneous groundwave propagation, the original path of integration
starts at t=-w jin the third quadrant (which corresponds to the antipode of
the observer), goes along the negative real axis, around the branch point at
the origin (which corresponds to the horizon of the observer), and along the
negative real axis in the second quadrant to t=—« (which corresponds to the
point on the ground directly below the observer). There is a second branch
point at t=y=2 (y=2 corresponds to an observer height of about 400 m). The
saddlepoint occurs at ts=1.4133-1.733i. The location of the saddlepoint is
determined by equation (Al2), whose solution depends on the surface impedance
of the sea, the free-space wavenumber, and the Earth radius. The original
path of integration can be deformed to follow the stationary phase path
through the saddlepoint. A saddlepoint evaluation of the integral leads to
the usual groundwave mode formula including the usual height-gain function.
For mixed-path propagation, the endpoint for the part of the integral over the
sea moves from - to t,, t,, t3, t,, to £. as the observer moves over land
farther away from the shoreline. ﬁhen thé observer is far enough away from
the shoreline that the endpoint is between t, and t,, diffractive corrections
are necessary. When the observer is so far away from the shoreline that the
endpoint is past t,, i1t is no longer useful to deform the path of integration
through the saddlepoint. The calculations here correspond to a radio fre-
quency of 30 MHz, ground conductivity of the sea of 4 mho/m, and a dielectric
constant of 80. Changing the wave frequency changes the scaling between phy-
sical units (height of the observer in m, and distance of the observer from
the shoreline in km) and the nondimensional units (v and the endpoint on the
negative real axis) and will change the position of the saddlepoint.
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d7p __ 1 _ -1/2 _ ,_
? = 7 ((y tt) ( tt)
t=t5

12y (F18)

The path of integration in the v plane 1Is from the origin around the
branch point at ka and back to the origin. Physically, this corresponds to
integrating from the antipode (v=0) to the horizon (v=ka) and from the horizon
to the polnt directly below 5?? observer (v=0), In the t plane, the path of
integration is from -2(ka/2) to the origin and back. In the t plane, the
branch point at the origin corresponds to the horizon. The first part of the
path is from the antipode to the horizom; the second part is from the horizon
to the point directly below the observer. For practical calculations, we can
consider the path of integration to begin and end at t=-—w.

The end point t' corresponds to the shoreline. The integrand is discon-
tinuous at the shoreline [as shown by splitting the integral into two parts im
(F13)] because the field on the ground is discontinuous at the shoreline. If
the shoreline is between the observer and the horizon, then the first integral
in (F13) includes the part of the path around the branch point at the origin.
If the shoreline is beyond the horizon, then the second integral includes the
part with the branch point at the origin.

To find out when the saddlepoint approximation is valid, we need to eva-
luate P-P__ in the complex t plane, where PS is the value of P at the saddle-
point. Figure F-1 shows such a plot. P

There are branch points at the origin and at t=y, and the branch cuts are

taken along the negative real axis and along the positive real axis from t=y
to +wI

For homogeneous groundwave propagation, we have only the first integral
in (F13). The path of integration is along the negative real axis (below the
branch line) to the origin, around the branch point at the origin, and back
along the negative real axis. The beginning and end of the integration con-
tour are so far away that they can be taken to be at -w,

The beginning of the integration contour is at the antipode of the
observer. The branch point at the origin is at the horizon of the observer.
The end of the integration contour 1s on the ground directly below the
observer.

The saddlepoint is at t=t_in the fourth quadrant. It is possible to
deform the path of integrationsto go through the saddlepoint along the sta-
tionary phase path shown in Fig. F-1. In so doing, the path does not cross
any singularities. The contour is closed at sectors of infinity where
exp(-iP)=0. It is not possible to deform the path of integration to follow
the steepest descent path because the steepest descent path is on the wrong
side of the branch point at t=y.

For mixed-path propagation, we must consider the integrals in (F13),
which have a finite endpoint. For the simple saddlepoint approximation to be

valid, the endpoint in the integral must be far enough from the saddlepoint
that
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le.; = B | > 1, (F19)

5p

where PS is the value of P at the saddlepoint, and PSl is the value of P at
the shotBline (the endpoint of the integration).

For the first integral in (F13), the integration is from -« to t'. Let
us start with t'=-«, and increase it to find out where the transition regions
are.

For t'=-», we have homogeneous groundwave propagation in which both the
observer and the source are above the sea. The contour can he deformed to
follow the stationary phase path, and the saddlepoint approximation gives the
usual homogeneous=—path groundwave propagation formulas.

For t' finite (for example t, in Fig. F-1), it is still possible to
deform the path of integration to fellow the stationary phase path through the
saddlepoint. The path of integration is then from the antipode to the hori-
zon, and from the horizon to the shoreline. The upper limit t' of the
integral canm be increased until 1t reaches t.,, where 1t is on the stationary
phase path., When the endpoint t' 1s larger (as at ty in Fig. 9), to get from
the endpoint to the stationary phase path it 1s necessary to go along the path

from ty to t2, where

|exp[—i(Psl—PSp)]l >1 . (F20)

Thus, although it is still possible to make a saddlepoint approximation to the
integral, there i1s a correction term equal to the integral from the endpoint
(t'=t,) to the stationary phase path at t,. The size of that correction
depenas on how far the stationary phase path is from the endpoint. Normally,
it would be possible to evaluate the integral for an endpoint near the saddle—
point using error functions or Fresnel integrals, but the presence of the
branch points makes that more difficult.

As the observer moves farther from the shoreline, the endpoint t' moves
to the origin, around the origin, and along the negative real axis in the
fourth quadrant. When the observer is so far from the shoreline that the end-
point 1s to the left of the path of steepest ascent at t,, i1t no longer makes
sense to deform the path of integration for the first integral in (F13)
through the saddlepoint. TInstead, it 1s more reasonable to simply integrate
the first integral in (F13) along the negative real axis.

We now consider the second integral in (F13), which corresponds to
integration over the part of the path on land. Again, we start with the
observer on the shoreline. Then the endpoints of the second integral co-
incide, and there is no contribution from that mixed-path part of the
integral, as expected.

As the observer moves back from the shoreline, the lower limit on the
second integral in (F13) moves to a point such as t; in Fig. F-2. The
integration contour is along the negative real axls from t) to —= in the
second quadrant. We can neglect the integral hecause
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Figure F-2.-—Complex t plane for integration for the land-type ground-
wave mode 1 (see Fig. F-1 for a general description). The saddlepoint
is at t =1.1743-1.99551i. This figure differs from Figure F-1 only
because of the location of the saddlepoint. For homogeneous groundwave
propagation over land, we can consider the shoreline to be very far
away. As the observer moves closer to the shoreline, the endpoint of
the integral moves from —« in the fourth quadrant to t. to t, and
farther. When the ohserver is so close to the shoreline that the end-
point is past t4 (e.g., at t,), it is no longer useful to deform the
path of inteeration through the saddlepoint. The calculations here
correspond to a radio frequency of 30 MHz, ground conductivity of the
land of 0.01 mho/m, and a dielectric constant of 15.

‘exp[—i(PSl—Psp)]| <1 (F21)

along the path.

As the observer moves farther back from the shoreline, the endpoint moves
to t,, where it 1s on the stationary phase path. There is still no signifi-
cant contribution to the second integral in (F13).

As the observer moves even farther back from the shoreline, the endpoint
moves past the stationary phase line to a point such as that at t3 in Fig.
F-2. There is now a significant contribution to the integral from ty to t,,
which must be included in the calculation.
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As the observer moves still farther back from the shoreline (beyond the
horizon), the endpoint t' moves around the branch point at the origin to the
point t, on the path of steepest ascent. If the observer moves farther from
the shoreline than this (so that the endpoint of the integral is at t., for
example) it is reasonable to deform the path of integration through tge
saddlepoint. It 1s necessary to add to the saddlepolnt evaluaticn of the
integral an integration from t. to the second line of steepest descent,
however. This can be considered a sort of diffractive correction because the
shoreline Is within the first Fresnel zone for the ray that satisfies Fermat's
principle.

No matter how far the ohbserver moves back from the shoreline, however, it
appears from Fig. F-2 that there will always be some correction because the
second stationary phase line approaches the negative real axis, but does not
intersect it. The correction seems to approach zero as the observer moves
farther from the shoreline, however.

The points t, and t, in Figs. F-1 and F-2 thus seem to be boundaries of
regions for the integrals in (Fi3). When the distance of the observer from
the shoreline is such that the endpoint is above the branch Iine and to the
left of t,, we can represent the field as a sea-type groundwave with no
diffractive corrections. When the endpoint 1s between t, and t,, we can
represent the field as a sea—-type groundwave, but with diffractive corrections
from both the integrals in (F13). When the endpoint is in the third quadrant
to the left of t,, we can represent the groundwave as a land-type groundwave,
but with diffractive corrections from both the integrals in (F13).

Figure 6-8 show the boundaries of these regions. The lines to the left
of the horizon (shown as a dashed line) show where t' = t, for sea—type
groundwave modes. The lines to the right of the horizon show where t' = ty
for both sea—-type and land-type groundwave modes.
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Appendix G. Equations From the Geometry of Figure 3

=
coth = i (G1)
kg = (P22 | (2,2 2y1/2 (G2)
' = e—-’Y - (GB)
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Appendix H. Equations From the Geometry of Figure 5

k% = (kzrz—\)z)l/2 - (1(232--\)2)1/2 (H1)

vy = cos 1 %{ - c:os--1 %a_ (n2)

a siny = & cos(y+6, ) = Ay (H3)
t kr

(kzrz—vz)l/2 = kr sin(y+9t) _ (H4)

(kzaz—vz)i'f2 = ka sinf_ . (H5)
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